

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray QUIN GLOBAL ASIA PACIFIC

Version No: 4.5

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **19/01/2023** Print Date: **19/01/2023** S.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier		
Product name	Product name GEKKO G93 500ml Aerosol Adhesive Cleaner Spray	
Synonyms	Not Available	
Proper shipping name	AEROSOLS	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Details of the manufacturer or supplier of the safety data sheet

Registered company name	QUIN GLOBAL ASIA PACIFIC	
Address	33 Hincksman Street Queanbeyan, NSW 2620 Australia	
Telephone	+61 2 6175 0574	
Fax	Not Available	
Website	www.quinglobal.com	
Email	sales@quinglobal.com.au	

Emergency telephone number

Association / Organisation	CHEMWATCH EMERGENCY RESPONSE	
Emergency telephone numbers	+61 1800 951 288	
Other emergency telephone numbers	+61 3 9573 3188	

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule Not Applicable	
Classification [1]	Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2B, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 1, Aspiration Hazard Category 1, Aerosols Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

nazara otalomoni(o)	
nent.	
r	

Version No: 4.5 Page 2 of 13 Issue Date: 19/01/2023 Print Date: 19/01/2023

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

H317 May cause an allergic skin reaction.	
H410	Very toxic to aquatic life with long lasting effects.
H304	May be fatal if swallowed and enters airways.
H222+H229	Extremely flammable aerosol. Pressurized container: may burst if heated.

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P211	Do not spray on an open flame or other ignition source.
P251	Do not pierce or burn, even after use.
P280	Wear protective gloves and protective clothing.
P261	Avoid breathing gas
P273	Avoid release to the environment.
P264	Wash all exposed external body areas thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.	
P331	Do NOT induce vomiting.	
P302+P352	IF ON SKIN: Wash with plenty of water and soap.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.	
P391	Collect spillage.	

Precautionary statement(s) Storage

•	
P405	Store locked up.
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
5989-27-5*	50-60	citrus terpenes
64742-48-9.	10-20	naphtha petroleum, heavy, hydrotreated
68476-85-7.	20-40	LPG (liquefied petroleum gas)
Legend:	Classified by Chemwatch; 2. Clas Classification drawn from C&L * EU	sification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. I IOELVs available

SECTION 4 First aid measures

D

Description of first aid measur	Description of first aid measures	
Eye Contact	If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation.	
Inhalation	If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.	

Version No: **4.5** Page **3** of **13** Issue Date: **19/01/2023**

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

Print Date: 19/01/2023

Ingestion

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.
- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

For petroleum distillates

- · In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- · Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- · Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

SMALL FIRE:

▶ Water spray, dry chemical or CO2

LARGE FIRE:

Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result		
Advice for firefighters			
Fire Fighting			
Fire/Explosion Hazard	carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. BEWARE: Empty solvent, paint, lacquer and flammable liquid drums present a severe explosion hazard if cut by flame torch or welded. Even when thoroughly cleaned or reconditioned the drum seams may retain sufficient solvent to generate an explosive atmosphere in the drum. WARNING: Aerosol containers may present pressure related hazards.		
HAZCHEM	Not Applicable		

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

Version No: **4.5** Page **4** of **13** Issue Date: **19/01/2023**

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

Print Date: 19/01/2023

SECTION 7 Handling and storage

Precautions for safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

Radon and its radioactive decay products are hazardous if inhaled or ingested

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ► Use in a well-ventilated area.
- ▶ Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- DO NOT incinerate or puncture aerosol cans.
- ▶ DO NOT spray directly on humans, exposed food or food utensils.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

Suitable containe

Safe handling

Conditions for safe storage, including any incompatibilities

For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.

- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- ▶ For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
- Aerosol dispenser.
- Check that containers are clearly labelled.

Low molecular weight alkanes:

- May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate.
- ▶ May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat.
- Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens
- ▶ may generate electrostatic charges, due to low conductivity, on flow or agitation.
- Avoid flame and ignition sources

Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes

Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C.

Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen.

Propane:

- reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.
- I liquid attacks some plastics, rubber and coatings
- may accumulate static charges which may ignite its vapours
- Avoid reaction with oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

Storage incompatibility

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	naphtha petroleum, heavy, hydrotreated	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	LPG (liquefied petroleum gas)	LPG (liquified petroleum gas)	1000 ppm / 1800 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3		
citrus terpenes	15 ppm	67 ppm	170 ppm		
naphtha petroleum, heavy, hydrotreated	350 mg/m3	1,800 mg/m3	40,000 mg/m3		
LPG (liquefied petroleum gas)	65,000 ppm	2.30E+05 ppm	4.00E+05 ppm		

Version No: **4.5** Page **5** of **13** Issue Date: **19/01/2023**Print Date: **19/01/2023**Print Date: **19/01/2023**

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

Ingredient	Original IDLH	Revised IDLH
citrus terpenes	Not Available	Not Available
naphtha petroleum, heavy, hydrotreated	2,500 mg/m3	Not Available
LPG (liquefied petroleum gas)	2.000 ppm	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
citrus terpenes	E	≤ 0.1 ppm

Notes:

Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Speed:
aerosols, (released at low velocity into zone of active generation)	0.5-1 m/s
direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

- ► Safety glasses with side shields
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Hands/feet protection

See Hand protection below

NOTE

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- No special equipment needed when handling small quantities.

OTHERWISE:

- For potentially moderate exposures:
- Wear general protective gloves, eg. light weight rubber gloves.
- For potentially heavy exposures:
- Wear chemical protective gloves, eg. PVC. and safety footwear.
- Insulated gloves

NOTE: Insulated gloves should be loose fitting so that may be removed quickly if liquid is spilled upon them. Insulated gloves are not made to permit hands to be placed in the liquid; they provide only short-term protection from accidental contact with the liquid.

Body protection

See Other protection below

Version No: **4.5** Page **6** of **13** Issue Date: **19/01/2023**

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

Print Date: 19/01/2023

Other protection

No special equipment needed when handling small quantities.

OTHERWISE:

- Overalls
- Skin cleansing cream.
- Eyewash unit.
- Do not spray on hot surfaces.

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Latridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- Generally not applicable.

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AX-AUS / Class 1	-
up to 50	1000	-	AX-AUS / Class 1
up to 50	5000	Airline *	-
up to 100	5000	-	AX-2
up to 100	10000	-	AX-3
100+		-	Airline**

^{** -} Continuous-flow or positive pressure demand.

A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

nformation on basic physical and chemical properties				
Appearance	Not Available			
Physical state	Liquified Gas	Relative density (Water = 1)	0.700	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	495	
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available	
Melting point / freezing point (°C)	-97	Viscosity (cSt)	Not Available	
Initial boiling point and boiling range (°C)	-40	Molecular weight (g/mol)	Not Available	
Flash point (°C)	-104	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available	
Upper Explosive Limit (%)	9.1	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	2.2	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	46.86	Gas group	Not Available	

Version No: **4.5** Page **7** of **13** Issue Date: **19/01/2023**Print Date: **19/01/2023**Print Date: **19/01/2023**

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

Solubility in water Immiscible pH as a solution (1%) Not Available

Vapour density (Air = 1) 2.93 VOC g/L 700.00

SECTION 10 Stability and reactivity

	······································
Reactivity	See section 7
Chemical stability	Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. Presence of heat source Presence of an ignition source
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

The vapour is discomforting

WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.

Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor.

Inhaled

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Nerve damage can be caused by some non-ring hydrocarbons. Symptoms are temporary, and include weakness, tremors, increased saliva, some convulsions, excessive tears with discolouration and inco-ordination lasting up to 24 hours.

Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Ingestion

Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence.

Isoparaffinic hydrocarbons cause temporary lethargy, weakness, inco-ordination and diarrhoea.

Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions.

Not normally a hazard due to physical form of product.

Considered an unlikely route of entry in commercial/industrial environments

Skin Contact

This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Skin exposure to isoparaffins may produce slight to moderate irritation in animals and humans. Rare sensitisation reactions in humans have occurred.

Spray mist may produce discomfort

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye

This material can cause eye irritation and damage in some persons.

Instillation of isoparaffins into rabbit eyes produces only slight irritation.

Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion.

Oh----!-

Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population.

A number of common flavor and fragrance chemicals can form peroxides surprisingly fast in air. Antioxidants can in most cases minimize the oxidation.

Chronic

Fragrance terpenes are easily oxidized in air. Non-oxidised forms are very weak sensitizers; however, after oxidation, the hyproperoxides are strong sensitisers which may cause allergic reactions. Autooxidation of fragrance terpenes contributes greatly to fragrance allergy. There is the need to test for compounds the patients are actually exposed to, not only the ingredients originally applied in commercial formulations.

Version No: **4.5** Page **8** of **13** Issue Date: **19/01/2023**

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

Print Date: 19/01/2023

Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin.

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray	TOXICITY	IRRITATION	
	Not Available	Not Available	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >5000 mg/kg * ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
citrus terpenes	Oral (Rabbit) LD50: >5000 mg/kg *[2]	Skin (rabbit): 500mg/24h moderate	
		Skin: no adverse effect observed (not irritating) ^[1]	
naphtha petroleum, heavy,	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
hydrotreated	Inhalation(Rat) LC50: >4.42 mg/L4h ^[1]	Skin: adverse effect observed (irritating) ^[1]	
	Oral (Rat) LD50; >4500 mg/kg ^[1]		
LPG (liquefied petroleum gas)	TOXICITY	IRRITATION	
	Inhalation(Rat) LC50: 658 mg/l4h ^[2]	Not Available	
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

for cold-pressed oil Citrus terpenes possess low toxicity following ingestion, dermal contact or inhalation. * Florida Chemical Company MSDS The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

d-Limonene is readily absorbed by inhalation and swallowing. Absorption through the skin is reported to the lower than by inhalation. It is rapidly distributed to different tissues in the body, readily metabolized and eliminated, primary through the urine.

Limonene shows low acute toxicity by all three routes in animals. Limonene is a skin irritant in both experimental animals and humans. Limited data is available on the potential to cause eye and airway irritation. Autooxidised products of d-limonene have the potential to sensitise the skin. Limited data is available on the potential to cause respiratory sensitization in humans. Limonene will automatically oxidize in the presence of light in air, forming a variety of oxygenated monocyclic terpenes. When contact with these oxidation products occurs, the risk of skin sensitization is high.

Limonene does not cause genetic toxicity of birth defects, and it is not toxic to the reproductive system.

The essential oils, oleoresins (solvent-free), and natural extractives (including distillates) derived from citrus fruits are generally recognized as safe (GRAS) for their intended use in foods for human consumption.

Botanicals such as citrus are comprised of hundreds of ingredients, some of which have the potential to cause toxic effects; for example, bergapten (5-methoxypsoralen; 5-MOP) is a naturally occurring furocoumarin (psoralen) in bergamot oil that causes light-mediated toxicity. Acute toxicity. Animal testing shows that the acute toxicity of these substances is generally low via skin contact.

Skin irritation: In animal testing, undiluted citrus essential oils caused varying degrees of irritation. In humans, no irritation was observed after applying a variety of these oils to skin.

Eye irritation: There appeared to be no significant eye irritation in testing with these substances.

Sensitisation: Testing in humans have shown that these substances generally do not cause sensitisation. However, among professional food handlers, some proportion (under 10%) had positive reactions to orange and lemon peel.

Light-mediated toxicity and sensitization: Testing for this group of substances has yielded mixed results. Light-mediated toxicity and sensitization have been seen in several people exposed to bergamot oil or limes/lime juice.

Cancer-causing potential: Animal testing showed that essential oils of citrus fruits promoted tumours. However, most were benign.

Adverse reactions to fragrances in perfumes and fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, sensitivity to light, immediate contact reactions, and pigmented contact dermatitis. Airborne and connubial contact dermatitis occurs. Contact allergy is a lifelong condition, so symptoms may occur on re-exposure. Allergic contact dermatitis can be severe and widespread, with significant impairment of quality of life and potential consequences for fitness for work.

citrus terpenes

If the perfume contains a sensitizing component, intolerance to perfumes by inhalation may occur. Symptoms may include general unwellness, coughing, phlegm, wheezing, chest tightness, headache, shortness of breath with exertion, acute respiratory illness, hayfever, asthma and other respiratory diseases. Perfumes can induce excess reactivity of the airway without producing allergy or airway obstruction. Breathing through a carbon filter mask had no protective effect.

Occupational asthma caused by perfume substances, such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms, even though the exposure is below occupational exposure limits. Prevention of contact sensitization to fragrances is an important objective of public health risk management.

Hands: Contact sensitization may be the primary cause of hand eczema or a complication of irritant or atopic hand eczema. However hand eczema is a disease involving many factors, and the clinical significance of fragrance contact allergy in severe, chronic hand eczema may not be

Underarm: Skin inflammation of the armpits may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a skin specialist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy.

Face: An important manifestation of fragrance allergy from the use of cosmetic products is eczema of the face. In men, after-shave products can cause eczema around the beard area and the adjacent part of the neck. Men using wet shaving as opposed to dry have been shown to have an increased risk of allergic to fragrances.

Irritant reactions: Some individual fragrance ingredients, such as citral, are known to be irritant. Fragrances may cause a dose-related contact urticaria (hives) which is not allergic; cinnamal, cinnamic alcohol and Myroxylon pereirae are known to cause hives, but others, including menthol, vanillin and benzaldehyde have also been reported.

Pigmentary anomalies: Type IV allergy is responsible for "pigmented cosmetic dermatitis", referring to increased pigmentation on the face and neck. Testing showed a number of fragrance ingredients were associated, including jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol and geranium oil.

Light reactions: Musk ambrette produced a number of allergic reactions mediated by light and was later banned from use in Europe. Furocoumarins (psoralens) in some plant-derived fragrances have caused phototoxic reactions, with redness. There are now limits for the amount of furocoumarins in fragrances. Phototoxic reactions still occur, but are rare.

General/respiratory: Fragrances are volatile, and therefore, in addition to skin exposure, a perfume also exposes the eyes and the nose / airway. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. A significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients and hand eczema.

Version No: **4.5** Page **9** of **13** Issue Date: **19/01/2023**

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

Print Date: 19/01/2023

Fragrance allergens act as haptens, which are small molecules that cause an immune reaction only when attached to a carrier protein. However, not all sensitizing fragrance chemicals are directly reactive, but some require previous activation. A prehapten is a chemical that itself causes little or no sensitization, but it is transformed into a hapten outside the skin by a chemical reaction (oxidation in air or reaction with light) without the requirement of an enzyme.

For prehaptens, it is possible to prevent activation outside the body to a certain extent by different measures, for example, prevention of air exposure during handling and storage of the ingredients and the final product, and by the addition of suitable antioxidants. When antioxidants are used, care should be taken that they will not be activated themselves, and thereby form new sensitisers.

Prehaptens: Most terpenes with oxidisable allylic positions can be expected to self-oxidise on air exposure. Depending on the stability of the oxidation products that are formed, the oxidized products will have differing levels of sensitization potential. Tests shows that air exposure of layender oil increased the potential for sensitization.

Prohaptens: Compounds that are bioactivated in the skin and thereby form haptens are referred to prohaptens. The possibility of a prohapten being activated cannot be avoided by outside measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Various enzymes play roles in both activating and deactivating prohaptens. Skin-sensitizing prohaptens can be recognized and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or studies of sensitization. QSAR prediction: Prediction of sensitization activity of these substances is complex, especially for those substances that can act both as preand prohaptens.

NAPHTHA PETROLEUM, HEAVY, HYDROTREATED

For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation. Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans.

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants).

Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus.

Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable.

LPG (LIQUEFIED PETROLEUM GAS)

inhalation of the gas

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray &

citrus terpenes

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a

clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The following information refers to contact allergens as a group and may not be specific to this product.

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray & NAPHTHA PETROLEUM, HEAVY, HYDROTREATED

be present in mineral oil, n-parattins may be absorbed to a greater extent than iso- or cyclo-parattins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores

citrus terpenes & LPG (LIQUEFIED PETROLEUM GAS)

No significant acute toxicological data identified in literature search.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	✓

Legend:

★ - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	0.214mg/l	2
citrus terpenes	EC50	48h	Crustacea	0.307mg/l	2
	LC50	96h	Fish	0.46mg/l	2
	NOEC(ECx)	504h	Crustacea	0.05mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
naphtha petroleum, heavy, hydrotreated	EC50(ECx)	96h	Algae or other aquatic plants	64mg/l	2
nyurotreateu	EC50	96h	Algae or other aquatic plants	64mg/l	2

Version No: **4.5** Page **10** of **13** Issue Date: **19/01/2023**

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

Print Date: 19/01/2023

LPG (liquefied petroleum gas)	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2
	LC50	96h	Fish	24.11mg/l	2
	EC50	96h	Algae or other aquatic plants	7.71mg/l	2
Legend:		IUCLID Toxicity Data 2. Europe ECHA Registered - Aquatic Toxicity Data 5. ECETOC Aquatic Hazar			

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

- Bioconcentration Data 8. Vendor Data

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When released in the environment, alkanes don't undergo rapid biodegradation, because they have no functional groups (like hydroxyl or carbonyl) that are needed by most organisms in order to metabolize the compound.

However, some bacteria can metabolise some alkanes (especially those linear and short), by oxidizing the terminal carbon atom. The product is an alcohol, that could be next oxidised to an aldehyde, and finally to a carboxylic acid. The resulting fatty acid could be metabolised through the fatty acid degradation pathway.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials.

Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics;
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil"was also tested and a 96-hour LC50 of 12 mg/L was determined. The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lovest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L . All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

Version No: **4.5** Page **11** of **13** Issue Date: **19/01/2023**

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

Print Date: 19/01/2023

For Propane: Koc 460. log

Kow 2.36

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water.

Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight.

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
citrus terpenes	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
citrus terpenes	HIGH (LogKOW = 4.8275)

Mobility in soil

Ingredient	Mobility
citrus terpenes	LOW (KOC = 1324)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ► Consult State Land Waste Management Authority for disposal.
- ▶ Discharge contents of damaged aerosol cans at an approved site.
- Allow small quantities to evaporate.
- ► DO NOT incinerate or puncture aerosol cans.
- ▶ Bury residues and emptied aerosol cans at an approved site.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM

Not Applicable

Land transport (ADG)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Environmentally hazardous		
Special precautions for user	Special provisions 63 190 277 327 344 381 Limited quantity 1000ml		

Air transport (ICAO-IATA / DGR)

UN number	1950		
UN proper shipping name	Aerosols, flammable		
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	2.1 Not Applicable 10L	

Version No: **4.5** Page **12** of **13** Issue Date: **19/01/2023**

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

Print Date: **19/01/2023**

Packing group	Not Applicable			
Environmental hazard	Environmentally hazardous			
	Special provisions	A145 A167 A802		
	Cargo Only Packing Instructions	203		
	Cargo Only Maximum Qty / Pack	150 kg		
Special precautions for user	Passenger and Cargo Packing Instructions	203		
	Passenger and Cargo Maximum Qty / Pack	75 kg		
	Passenger and Cargo Limited Quantity Packing Instructions	Y203		
	Passenger and Cargo Limited Maximum Qty / Pack	30 kg G		

Sea transport (IMDG-Code / GGVSee)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk Not A	Applicable	
Packing group	Not Applicable		
Environmental hazard	Marine Pollutant		
Special precautions for user	Special provisions	F-D, S-U 63 190 277 327 344 381 959 1000 ml	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
citrus terpenes	Not Available
naphtha petroleum, heavy, hydrotreated	Not Available
LPG (liquefied petroleum gas)	Not Available

Transport in bulk in accordance with the ICG Code

•	
Product name	Ship Type
citrus terpenes	Not Available
naphtha petroleum, heavy, hydrotreated	Not Available
LPG (liquefied petroleum gas)	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

citrus terpenes is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

naphtha petroleum, heavy, hydrotreated is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

LPG (liquefied petroleum gas) is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

National Inventory Status

National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	Yes		
Canada - DSL	Yes		
Canada - NDSL	No (citrus terpenes; naphtha petroleum, heavy, hydrotreated; LPG (liquefied petroleum gas))		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	Yes		
Japan - ENCS	Yes		

Version No: 4.5 Page **13** of **13** Issue Date: 19/01/2023 Print Date: 19/01/2023

GEKKO G93 500ml Aerosol Adhesive Cleaner Spray

National Inventory	Status	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - FBEPH	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	19/01/2023
Initial Date	16/05/2022

SDS Version Summary

Version	Date of Update	Sections Updated
3.5	18/01/2023	Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Advice to Doctor, Chronic Health, Classification, Disposal, Engineering Control, Environmental, Exposure Standard, Fire Fighter (fire/explosion hazard), First Aid (swallowed), Ingredients, Personal Protection (other), Physical Properties, Spills (major), Storage (storage incompatibility), Storage (storage requirement), Use

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.